AdOD. 1T L3S

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

VITAL COMPILER-COMPILER SYSTEM REFERENCE MANUAL

L. F. MONDSHEIN

Group 23

TECHNICAL NOTE 1967-12

8 FEBRUARY 1967

LEXINGTON MASSACHUSETTS

ABSTRACT

This manual describes the general operation of the VITAL compiler-
compiler system and the details of Production Language (PL) and Formal
Semantic Language (FSL).

The Appendices contain information on the system's meta-commands,

a guide to the use of PL, an example of an ALGOL compiler, and a table of

symbols used in PL and FSL.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office

iii

PREFACE

This document is intended primarily as a reference manual for
users of the VITAL system as it is presently implemented on the Lincoln
Laboratory TX-2 Computer. It is not an introductory text. However,
hopefully it will be helpful to other readers who wish to acquaint
themselves with the operation of the system. Such readers are advised

to study Chapter 1 and Appendix B, read Chapters 2 and 3 in a cursory

manner, and then proceed to a careful study of Appendix C.

The author wishes to thank Dr. Jerome A. Feldman and James E. Curry

for the tutelage they gave in the preparation of this material.

iv

TABLE OF CONTENTS

Abstract

Preface

CHAPTER | — THE VITAL SYSTEM

A4,
2t

General Description

Operation of Compiler

CHAPTER 2 — PRODUCTION LANGUAGE

1t

2
< 3
1

Program Structure
Declarations
Productions

Remarks

CHAPTER 3 — FORMAL SEMANTIC LANGUAGE

L

2
3
4,
5

Primaries and Boolean Primaries
Arithmetic and Boolean Expressions
Unconditional and Conditional Statements
Declarations

General Features

APPENDIX A — Control Meta-Commands?®*

APPENDIX B — Production Language Guide

APPENDIX C — Algol: Semantics and Productions

APPENDIX D — Symbols

* By James E. Curry, C.W. Adams Associates, Inc.

w

w oo u

13
20
22
28
30

83
49
SV

73

CHAPTER I
THE VITAL SYSTEM

s GENERAL DESCRIPTION

Purpose
The purpose of the VITAL system is to mechanize the details of

compiler-writing for a wide class of potential compilers. The term VITAL

denotes Yariably_Initialized Translator of Algorithmic Languages.

Figure 1, explained below, presents a functional view of the system.

DESCRIPTION DESCRIPTION ﬁ_13-25-7219
OF OF

COMPILER SYNTAX COMPILER SEMANTICS

PL FSL
PROCESSOR PROCESSOR

COMPILER -COMPILER

COMPILER
SOURCE
LANGUAGE
INPUT L L
R LANGUAGE - T LANGUAGE —
E c DEPENDENT R DEPENDENT
0 N
G el S
" | o A
LANGUAGE- £ ¢ LANGUAGE- T
INDEPENDENT R INDEPENDENT R
/ TRANSLATED
QUTPUT
FIGURE 1

Compiler Structure

A compiler produced by VITAL consists of two units: a
recognizer and a translator. The recognizer identifies syntactic features

of the source text; the translator creates output code.

Each of these units is partitioned into a language~dependent
and a language-independent section; the language-independent

section is the same for all compilers.

Recognizer

The recognizing or parsing of input text is implemented by

the production interpreter, which is driven by a table of productions.

The production interpreter is language-independent; the productions

are language-dependent.

The compiler writer describes the productions in a high-level

language called Production Language, or PL (See Chapter 2).

Translator
The translation of input is produced by a set of semantic

routines. These routines contain calls to a collection of code generator

subroutines. The code generators are language-independent; the

semantics are language-dependent.

The semantics are specified by the compiler writer in a high-
level language known as Formal Semantic Language, or FSL (See

Chapter 3).

Compiler-Compiler Construction

Both the PL and FSL processors have the same structure as the
compiler illustrated in Figure 1. They were created by a hand-coding

and bootstrapping operation.

First, the language-independent code generators and pro-
duction interpreter were hand-coded. Then the PL processor was
constructed by hand-coding its semantics and productions. The
FSL processor was produced by hand-coding its semantics and

writing its productions in PL.

It might be noted that the language-independent sections
are identical in the PL processor, FSL processor, and all VITAL-
produced compilers, with the single exception of the PL code
generators. These last are a small subset of the standard collection
of code generators, due to the relatively simple nature of the PL

output.

2. OPERATION OF COMPILER

Productions, Semantics, Main Stack

The main stack is part of system storage. Its function is
both syntactic and semantic. When the history of the stack is
displayed as a tree (Appendix B, Figures 2 and 3), the result is a
parse of the input text being compiled. The role of the productions is
(1) to generate the successive states of the stack during a single
scan through the input text and (2) to transfer control to the proper
routines in the semantics whenever certain specified syntactic

constructs occur in the stack.

Each stack entry consists of three consecutive machine words:

the syntax word, used by the productions; and two semantic words,

used by the semantics. The syntax word is discussed in the next

section. Details of the semantic words are described in Chapter 3, 5.4.

The productions and semantics perform complementary functions
with regard to the main stack. The productions implement the analysis

of syntax by manipulating the syntax portion of the stack; the semantic

routines preserve all information needed for the generation of code,

updating the semantic portion of the stack whenever necessary.

Processing of Input Text

The compiler makes a single scan through the symbols in
the input text. These symbols fall into two classes: (1) those which

the productions have been set up to recognize as reserved words;

these words are part of the language in which the text is written
(example: DO or + in FORTRAM or ALGOL); (2) all other symbols,

which are referred to as identifiers.

When a reserved word is scanned, a representation of this
symbol is pushed onto the main stack (in the syntax word); when an
identifier is scanned, an item denoting "identifier" is entered instead.

The corresponding semantic words are of no relevance at this point.

Following a scan operation, the top few syntax entries are

compared with a table of expected stack configurations, i.e.

exXpected states of the stack. This table is part of the productions.
When a match is found, a collection of routines associated with the
matched configuration are executed. These routines may do any of the
following: modify the syntax portion of the stack; jump to semantic
routines: record an error message; cause one Or more symbols to be
scanned; or specify the next configuration to be compared with the

stack.

The process of scanning and matching continues until all the
symbols in the input program have been scanned or a termination

command is reached in the productions or semantics.

CHAPTER 2
PRODUCTION LANGUAGE
*

Production Language (PL) is the language used for specifying the
productions. It is translated by the PL processor. In what follows,
the term productions will refer to the PL program as well as the result of its
translation; and the two will be treated as if identical.

As noted in Chapter 2 the function of the productions is (1) to
generate successive states of the main stack on the basis of a single scan
through the input text and (2) to transfer control to the proper routines in
the semantics whenever certain specified syntactic constructs occur in the
stack.

The following sections present the syntax of PL. A guide to the

writing of productions is given in Appendix B.

1. PROGRAM STRUCTURE
A PL program consists of a collection of declarations followed by a
number of lines each of which is called a production. The entire program is

terminated by the symbol END.

v DECLARATIONS

2.1 CHOPPER DECLARATIONS
NORM < argument >

VTERM < argument>

ITERM < argument>

Permissible argument: A sequence of Lincoln Writer codes (in octal)

separated by spaces.
Description: A code appearing in a NORM declaration is treated as a normal
character; a code appearing in a VTERM or ITERM declaration is treated as a

visible terminator or ignored terminator, respectively. This terminology is

explained below.

* Production language uses a slightly modified version of the formalism

introduced in Reference 3.
5

Each VITAL symbol is composed of one or more VITAL characters.
A VITAL character may be either a single Lincoln Writer character or a
compound character composed of at most two "dead" (non-spacing) and two
"line" (spacing) Lincoln Writer characters.

A VITAL symbol is either (1) a single Lincoln Writer character which

is classified by the system as a terminator (either visible or ignored), (2)

a compound character (which is automatically classified as a terminator),
or (3) a string of non~-terminators between two terminators. (Non-terminators
are called normal characters.)

An ignored terminator, unlike a visible terminator, is not pushed

onto the stack by the scan operation (see Chapter 1, section 2). For example,
a space is generally treated as an ignored terminator.
Each Lincoln Writer code is classified by the system in a standard
manner (see Appendix A) unless it is reclassified by a CHOPPER DECLARATION.
In Chapter 3 the term identifier will be used to refer to any VITAL

symbol whose first character is not an integer.

2.2 RESERVED WORDS: RES <argument>

Permissible argument: A sequence of VITAL symbols separated by spaces

(not commas).

Description: Symbols declared as reserved words become part of the language
whose syntax is being specified.

Remarks: If a non-printing character or a character which is part of PL is to
be declared a reserved word, it must be denoted by a special identifier to

avoid confusion.

character special identifier
- pHAND

= PEQ

superscript pSUP

subscript pSUB

normal pNOR

- PAROW

I pDBAR

carriage retum pCR

If a word which is part of PL is to be declared a reserved word, it
must be preceded by a "q". The words in this category are EXEC, STAK,
UNSTK, SCAN, ERROR, HALT, NEXT, CALL, RETURN, TEST, DONE, END,
RES, INT, NORM, VTERM, ITERM.

2.3 INTERNAL SYMBOLS: INT <argument>

Permissible argument: A sequence of VITAL identifiers separated by spaces

(not commas).
Description: Internal symbols are symbols which are neither part of the
language being specified nor part of Production Language. They are entries

to be made by the compiler in the syntax portion of the stack.

2.4 CLASS NAME: <argument 1> = < argument 2 >

Permissible arguments

argument l: any VITAL identifier (the "class name").

argument 2: a sequence of reserved words (see 2.2).

Example: ¢ BOOL = V ATHEN pAROW

Description: A class name is simply a notational convenience; a production
containing a class name is equivalent to a sequence of productions con-

taining each of the corresponding reserved words.

2.5 CLASS NAME WITH ASSOCIATED SEMANTIC ROUTINE NUMBERS
Example: TOTH = TO 116 THRU 117

Form: Same as 2.4, except that a triple equal sign is used and each
reserved word is followed by an associated semantic routine number.

g 3 , . ’/\
The use of such a class name is discussed in section 3, (5 .

3. PRODUCTIONS

The syntax of a production is described most easily by example.

The following production is typical.

BE3 || JF
t
5 @

THEN-~ ICL EXEC 110 50
A

T
OR0 8

~—

E
"
i

{

i BE3 is a label. Labels must be followed by 'l . (All labels are optional.)
2 IF E THEN is one member of the table of "expected stack configurations"
discussed in Chapter 1, section 2. In this example, IF and THEN are
reserved words; E (denoting "expression") is an internal symbol.

The routines indicated by 'i?? - CS\ are executed only if the top of

the main stack matches /:2\ :

3 The arrow indicates that the part of the stack matching @ is to be replaced
by E (which can be empty). The absence of an arrow indicates that no

alteration is to be made.

@ ICL is an internal symbol (denoting "if clause"). In the example, the top
three entries in the stack are removed and ICL is pushed onto the stack in
the syntax word. The contents of the corresponding semantic word are
determined by semantic routine 110 (see /5\)"

Formal Semantic Language provides primitives for manipulating the
semantic words of the stack once a match is found. The semantic words
associated with the stack syntax words corresponding to 2" are denoted by
Ln, LLn (1 =n = 7) (recall that there are two semantic words per stack entry;
Ln is the first, LLn the second). The semantic words associated with the
stack syntax words corresponding to @ are denoted by Rn, RRn (1 =n = 4),

(L1, LL1 and Rl, RRI refer to the top of the stack.) See Chapter 3, 1.2.

/5 EXEC 110 causes transfer of control to semantic routine 110 (see Chapter 3,

5.1). A class name may be used instead of a number. In such a case, a
a transfer will be made to routine n, where n is the number associated with

the reserved word actually in the stack (see 2.5).

= S0 is a transfer indicator, causing the main stack to be compared next

with the production labelled SO. If no transfer indicator appears, the stack

will be compared with the succeeding production.

Both EXEC 110 and =~ S0 are known as actions.

ALEER

UNSTK m:

SIS

STAK < argument >:

SCAN:
SCAN n:
ERROR n:

HALT n:

NEXT <argument >:

TEST <argument >:

RETURN:

Additional actions

remove the top m entries from the stack and save in
storage

take the nth entry (counting from the top) removed by
UNSTK and push it onto the stack (including both the
syntax and semantic words).

push the argument (a reserved word or internal symbol)
onto the stack.

scan one input symbol.
scan n input symbols.

store error message n in output buffer (for either console
or Xerox print-out).

halt execution of productions, store n in output buffer,
return to system control.

(5).

same as = < argument > (see (5

same as = <argument > , except that the action has effect
only if SIGNAL has the value TRUE (see Chapter 3, 1.20).

return to production which made the last CALL (see below).

CALL <argument> (where argument is a production label): execute the productions

4. REMARKS

starting at the label, and continue until the action RETURN.

Two frequently used symbols which are part of PL are SG (sigma) and

I (identifier). When used in part @ of a production, SG matches any item

in the stack.

is scanned.

"I" is the symbol pushed onto the stack whenever an identifier

(See Chapter 1, section 2, OPERATION OF TRANSLATOR).

CONTENTS OF CHAPTER 3

CHAPTER 3 FORMAL SEMANTIC LANGUAGE

L. PRIMARIES AND BOOLEAN PRIMARIES
Primaries
(s 1 System Cell
2! Production Operand
L3 Cell Identifier
1,4 Stack Identifier
125 Table Operand
1.6 Flad
7 Chain
8 Contents
1.9 Location
1.10 Type
Leld Absolute Value
1 57 Constant
15 2 Parenthesized Arithmetic Expression
bl Code-bracketed Expression
L.L& Store with Value

S Tag
i Fix
Boolean Primaries
158 Boolean Constant
Il diS Test

1.20 Constant Test
1.21 Relation
5242 Boolean Cell

123 Parenthesized Boolean Expression

10

2. ARITHMETIC AND BOOLEAN EXPRESSIONS

Dhe UNCONDITIONAL AND CONDITIONAL STATEMENTS

Unconditional Statements

Storage Manipulation

3.1 Stack Commands

il Enter Command
8.8 Store
3.4 Tally
3l Storage Operations
Control

3.6 Assign
Bl Label
8l 8 Subroutine Name, Subroutine Entrance Name

3.9 Return

3.10 Exit

3.11 Jump

s 44 Call
a3 Fault
3.14 Stop
BrillS Complete

Conditional Statements
3.16 If ... then
Bl 117 If not ... then

3.18 If ... then ... else

4, DECLARATIONS
4,1 Cell Delcaration
i) Index Declaration

4.3 Run-index Declaration

i

Table Declaration
Stack Declaration
Run-stack Declaration

Data Declaration

[S S
o NN O b

Sub-data Declaration

GENERAL FEATURES

Sie 1 Program Structure
S Comments

Sed Code Brackets

5ud Semantic Description

12

CHAPTER 3
FORMAL SEMANTIC LANGUAGE

Formal Semantic Language1 2 (FSL) is the language used to specify the
semantics. It is translated by the FSL processor. The components of FSL
are discussed in the first four sections below. Section 5 discusses general
features of the language. Careful attention should be given to 5.3 (code

brackets) and 5.4 (semantic description).

s PRIMARIES AND BOOLEAN PRIMARIES

The primaries and boolean primaries are the basic constituents of FSL.

They include variables whose values are maintained by the system or by
the user, as well as operators.

For example, CODELOC (see 1.1) is a system-maintained variable
whose value is the address in which the next compiled instruction will be
stored. Cells (see 1.3), which are the simplest user-maintained variables,
correspond to single machine words.

In the description of the syntax of an operator, the argument is

denoted by the symbol < argument >.

Primaries

| SYSTEM CELL: CODELOC, STORLOC, PERSLOC, ACCUM, MARK,
MAIN, SAVCELL

Description: The system cells contain pointers or bits that are useful to

both the language designer and the system.

CODELOC points to the location in which the next word of code
will be stored.

STORLOC points to the next free register in the run-code storage
area. (The term run code refers to the code generated by the
compiler.) Proper manipulation of STORLOC enables the compiler-
writer to conserve storage space at the time the run-code is
executed.

13

PERSLOC points to storage ("persistent storage") that can be
loaded during compilation and utilized during the running of the
compiled program. For example, non-integer constants may be
stored in the PERSLOC area.

ACCUM contains information concerning the state of the run-code
accumulator. For example, whenever an instruction is compiled
which loads the accumulator, the B INA bit in ACCUM is set to 1
(see 4.8). When an instruction is compiled which stores from the
accumulator, the B INA bit is cleared. Other bits which may be set
are: B DIR, BRNEG, and BCON (see 4.8).

MARK preserves information used during the compilation of (possibly
recursive) subroutines. It points to a register containing the return
address associated with the last subroutine call or subroutine
entrance call (3.12). This register implements a push~down stack
used by the RETURN command (3.9), thus permitting recursive sub-
routine calls.

MAIN points to the top of the main stack (see Chapter 1, section 2).

SAVCELL points to a temporary address generated by the SAVTEMP
statement (see 3.5).

I o2 PRODUCTION OPERAND: L1, LL1l, ..., L7, LL7, R1, RR1, ...R4, RR4
Description: L1, LL1I — L7, LL7 are the first seven semantic entries of the
main stack before a production is executed.Rl, RR1 — R4, RR4 are the first
four semantic entries of the stack after completion of the entire production.
(See Chapter 1, section 2; also Chapter 2, section 3.)

Remarks: The production operands provide a convenient way of manipulating
the semantic portion of the stack. For example, the store commands (see 3.3)
"L1 - R2; LL1 -~ RR2; L2 - Rl; LL2 - RR1" permute the contents of the top

two semantic entries.

1.3 CELL IDENTIFIER

Form: Any VITAL identifier (see Chapter 2, section 2.1).
Description: Cells are single storage locations within the compiler. Cells

must appear in a cell declaration (4.1) before being used elsewhere.

14

| STACK IDENTIFIER

Form: Any VITAL identifier

Description: A stack identifier is the name of a push-down stack. Before

its use, the identifier must appear in a STACK or RSTAK declaration (4.5, 4.6),
in which case it refers to a stack in the compiler or run-code, respectively.

The stack may be operated upon by means of the stack commands

(3.1). When used as an ordinary operand the value of a stack identifier

is the entry at the top of the stack.

s TABLE OPERAND
Examples: SYMTABL { L1, ADDR }; JMPTABL { L3, LOC, 1}; LABLTAB {0, COL3}
Form: <argument 1> { < argument 2>, < argument 3>, < argument 4 > }

Permissible arguments

argument l: table identifier, i.e. identifier appearing in a table declaration (4.4).
argument 2: primary or 0.

argument 3: column name (see 4.4).

argument 4: 0 or 1 ("mode"; optional if 0).

Description: The value of the table operand is the table entry found by the
following procedure. The first column of the table is searched for an entry
equal to argument 2 if it is a primary. The value of the table operand is taken
from the row containing this entry and the column identified by the column name.
If argument 2 is 0, the row used is that referenced by the last table operand
search.

If the mode (argument 4) is 0 or unspecified, the table is searched
upward from the bottom entry; if the mode is 1, the search starts upward from
the last row referenced by a table operand search (or from the bottom entry
if there has been no previous search).

If no match is found for the primary, SIGNAL (see 1.22) is set to
FALSE (see 1.18) and the table operand is given the value 0.

Like most primaries, a table operand may appear either inside or

outside code brackets (see 5.3).

LS

{30 FLAD: FLEADL, +. «» FLADA
Description: Flads are intended to facilitate forward references such as
jumps to program locations not yet determined. FLADn is used as an operand,
its value being the value of CODELOC at the time the assign command
FLADn = is executed (see 3.6).
Note: (1) Each flad is a stack; the value of FLADnN is the entry at the top
of the stack. To use flads in nested procedures, do a PUSH FLADn (see 3.1)
at each successive level of nesting. The assign command will automatically
pop the stack.

(2) A flad can handle forward references only; its value depends upon

the corresponding assign command which first follows its use.

| CHAIN: () <argument>

Permissible argument: primary

Description: The purpose of the chain operator is to permit compilation of
forward and backward references such as jumps to program locations; hence,
the operator appears only within code brackets (see 5.3).

The expression (D < argument> is used as an operand, its value

being a semantic description (5.4) of the value of CODELOC (see 1.1) atthetime

the assign command < argument> = is executed (see 3.6). The system handles

the problems arising from the separation in time between the appearance of (D
< argument> and the corresponding assign command.
The argument of the chain operator must have as its value the address
of an arbitrary machine word initially containing 0. A typical example of
the use of a chain is "0 - TEMP; x TEMP - VAR; @ JUMP j) VAR £
(TEMP and VAR are cells; see 5.3 for a discussion of the symbols . »
TEMP is called the cell through which VAR is chained. If VAR is chained

through a different cell, the chain takes on a new value. The original value
is restored by chaining VAR through TEMP once again {provided TEMP has not

been modified).

16

1.8 CONTENTS: k <argument>

Permissible argument: primary

Discussion: Both the contents of a machine word and its address may be
needed during compilation. This and the following operator provide a way
to refer to each of these items in terms of the other. TFor example, if TEMP
is a cell, the value of A TEMP is the address of the machine word containing
the value of TEMP. The value of kKTEMP is the contents of the word is whose
address is the value of TEMP (assuming that the value of TEMP is an address).
The term run code used below refers to the code being compiled.
Description: Outside code brackets (see 5.3), it is assumed that the value
of the argument is an address. The value of k <argument> is the present
contents of this address.

Inside code brackets, it is assumed that the value of the argument
is a semantic description (see 5.4) of a run-code address. The value of
k <argument> is a semantic description referring to the contents of this
address, i.e. to this address deferred.
Remarks: The contents operator may be nested only once. I.e. kk < argument>

is permissible; kkk < argument> is not.

19 LOCATION: A <argument>

Permissible argument: table identifier or primaries 1.1 — 1.8

Description: When the argument is a table identifier, the value of A < argument >
is a pointer (a 17-bit address) to the first free register in the table.
The value of X <argument> is described separately for each of the
primaries 1.1 — 1.8,
(1) System Cell. The value of A < argument> is the address of the machine
word corresponding to the system cell.
(2) Production Operand. When used outside code brackets (see 5.3), the
value of A < argument> is the address of the machine word corresponding to

the production operand.

17

When used inside code brackets, the value of X <argument> is a
semantic description (see 5.4) of the operand (e.g. machine address, index
number) containing the operand described by < argument> . Because of the
use of persistent storage (see 1.1) and pointers in the compilation process,
the former operand already exists. However, such an operand would not be
available for A A < argument> , and nesting is therefore not allowed.

(3) Cell Identifier. The value of A < argument> is the address of the machine
word corresponding to the cell identifier.

(4) Stack Identifier. The value of A < argument> is a 17-bit pointer to the
top of the stack (when used outside code brackets with a stack) or a

semantic word description of this pointer (when used inside code brackets
with a run-stack). See 4.5, 4.6.

(5) Table Operand. The value of A < argument>is the address of the word

in the table containing the looked-up table entry (see 1.5).

(6, 7) Flads, Chains. The value of A < argument> is a semantic description
of a run-code address containing the value of the flad or chain.

(8) Contents. The location operator is the inverse of the contents operator.

1,10 TYPE: t < argument>

Permissible argument: primary

Description: It is assumed that the value of < argument>is a semantic
description (see 5.4). The value of t <argument > is this description with

all bits masked out except the data type bits (4.1 — 4.5).

1.11 ABSOLUTE VALUE: || <argument >

Permissible argument: production operand (or operand whose value is a

semantic description (see 5.4).
Description: The address portion of a production operand sometimes contains
an address in complemented form. || < argument > differs from <argument > only

only in that the address is represented in non-negative form.

18

1.12 CONSTANT

Description: Numerical constants may be used in FSL. Outside code
brackets, a constant ¢ is interpreted as a cell with value c. Inside code
brackets, c is interpreted as an operand whose value is a semantic

description (see 5.4) of a run-code register containing c.

1.13 PARENTHESIZED EXPRESSION: (< argument >)

Permissible argument: arithmetic expression (see Section 2).

Remarks: Parentheses may be used whenever desired to indicate the grouping

of arithmetic expressions.

1.14 CODE-BRACKETED ARITH METIC EXPRESSION: [E] < argument >

Permissible argument: arithmetic expression.

Description: The value of the bracketed expression is @ semantic description
(see 5.4) of the result of performing the operation(s) specified by the
arithmetic expression.

In addition to being a primary, a code-bracketed arithmetic expression

may cause run-code to be generated (see 5.3).

1.15 STORE WITH VALUE: < argument 1 > = < argument2 >

Permissible arguments

argument l: arithmetic expression. (This includes primaries, see section |
argument 2: primary.

Description: STORE WITH VALUE is both a primary and an unconditional
statement. It has the same effect as an assignment statement. In addition, it
may be used as a primary having the same value as the first argument.
Example: TEMPO = TEMPI + 1 = TEMP2.

TEMPO is stored into TEMP1; the primary TEMPO = TEMP1 has the same value

I8

as TEMPO. This value is incremented by 1 and the result is stored in TEMP2;
this result is likewise the value of TEMPO = TEMPI 4+ 1 = TEMP2, The same
effect would be obtained if parentheses were used as follows: (TEMPO = TEMPI) +
1 = TEMP2,

1.16 TAG: <argumentl >| <argument2 >

Permissible arguments

argument l: primary.

argument 2: list of data or bit identifiers separated by commas (see 4.7, 4.8).
Example: TEMP | ABOOL, BINA

Description: Argument 1 is tagged with the bits specified in argument 2. The
tagging operation consists of clearing the left half of the word being tagged,
followed by successive unite operations with the left half of words containing

the specified bits. Thus, the right half of the tagged word is preserved.

L A7 4. FlXs < argument >

Permissible argument: primary whose value is a semantic description.

Description: The fix operation is used only within code brackets. The

operand described by the primary is made into an integer by means of truncation.

Boolean Primaries

1,18 BOOLEAN CONSTANT: TRUE, FALSE
Description: The two boolean constants are the values of the boolean
primaries which follow. They may be used as operands of the store command

(3.3), in @ manner similar to numerical constants (see 1.12).

1.13 TEST: <argumentl >1IS < argument2 >

Permissible arguments

argument l: primary.

20

argument 2: data id, sub-data id, or bit id (see 4.7, 4.8, 4.9).
Description: This primary has the value TRUE or FALSE depending on
whether the argument on the left is or is not tagged with the bits specified

on the right.

1,20 CONSTANT TEST: CONST < argument >

Permissible argument: primary.

Description: The value is TRUE or FALSE, depending on whether or not the
g CON bit is set in the argument. This primary is meaningful only when its
argument is a production operand or other operand whose value is a semantic

description (see 5.4). It can be used outside code brackets only.

L2 RELATION
Example: <argument > = <argument > (Relations which can be used other

than include #, <, >, <, 2)

Permissible argument: primary

Description: The primary has value TRUE if the relation is satisfied, FALSE

otherwise.

1.22 BOOLEAN CELL: OK, SIGNAL
Description: The cells OK and SIGNAL are given the value TRUE or FALSE
by the user and system, respectively.
If OK is set FALSE, no further code will be produced, though the
input will continue to be scanned. OK cannot be reset once it is FALSE;
it is intended to be used only for irrecoverable syntax errors.
The system gives SIGNAL the value TRUE or FALSE upon successful
or unsuccessful completion of certain routines. For example, SIGNAL is set
TRUE or FALSE depending upon whether a table search does or does not succeed

in finding the desired item (see 1.5).

2l

1.23 PARENTHESIZED BOOLEAN EXPRESSION: (< argument >)

Permissible argument: Boolean expression (see Section 2).

Description: Parentheses may be used whenever desired to indic:te the

grouping of boolean expressions.

2. ARITHMETIC AND BOOLEAN EXPRESSIONS

Arithmetic expressions are formed from the primaries and the operators

+, - (both binary and unary), *, /, and exponentiation.

Boolean expressions are formed from the Boolean primaries and the

operators ~, A, V (inclusive or), @ (exclusive or). The usual dominances
apply but may be overridden by parentheses.
Primaries and boolean primaries are themselves considered as

arithmetic and boolean expressions, respectively.

8l UNCONDITIONAL AND CONDITIONAL STATEMENTS
The statements of FSL consist of commands used for manipulating

storage and modifying program flow.

Unconditional Statements

Storage Manipulation.- The following commands facilitate manipulation of

storage.

3.1 STACK COMMANDS

PUSH < argument 1>

PUSH { < argument 1 > , < argument2 > }
POP <argument 1 >

POP { <argumentl > , <argument2 > }

Permissible arguments

argument l: stack identifier (see 1.4).

argument 2: primary.

Description: If argument 2 is not specified, PUSH takes the second argument
as zero, while POP simply discards the top entry of the stack.

22

When the commands are used outside code brackets, PUSH places
the value of argument 2 on top of the stack, while POP removes the top
item in the stack and stores it in argument 2.

When commands are used inside code brackets, they describe
run-code operations. The value of argument 2 must therefore be a semantic

description. (see 5.3, 5.4).

8 v ENTER COMMAND
The ENTER command is used to enter a new row in a table.
Example: ENTER { TABL, TEMPl, TEMP2, TEMP3 }
A new row is entered in the table TABL.
TEMPI is stored in column 1, TEMP2 in column 2, etc.
Remarks: The first argument must be a table identifier. The remaining
arguments must be arithmetic expressions. The number of arithmetic expressions
can be less than the number of columns in the table.
SIGNAL is set to FALSE if the table is already filled. (The number of

rows in a table can be specified by the compiler writer (see 4.4).

33 STORE: < argumentl > - < argument?2 >

Permissible arguments

argument 1: primary.
argument 2: primary or Boolean cell .
Remarks: The store operation is non-destructive. See 5.3 for a discussion

of the influence of code brackets on the interpretation of the arguments.

23

314 TALLY
TALLY <argumentl >
TALLY { <argumentl > , < argument2 > }

Permissible arguments

argument l: primary.
argument 2: arithmetic expression.
Description: Tally adds the value of argument 2 to argument 1. If the

second argument is unspecified, it is taken as 1.

L5 STORAGE OPERATIONS
LOAD <argument >

SAVLOAD < argument >
SAVTEMP < argument >

Permissible argument: Production operand (or operand whose value is a

semantic description (see 5.4).
Description: The accumulator operations are used within code brackets only.
(a) LOAD <argument > , SAVLOAD <argument >

Run~code is compiled for a store operation from the operand described
by <argument > to the run-code accumulator. The BINA bit is set in ACCUM
(see 1.1). Further, in the case of SAVLOAD, code is compiled for a store
of the previous contents of the run-code accumulator into a temporary register;
a semantic description of this register is placed in the appropriate stack entry.
(b) SAVTEMP < argument > ("save in temporary location")

The argument is a semantic description of a run-code operand, which
may be either an index register, ordinary memory register, or the run-code
accumulator. Run-code is compiled for a store of this operand in a temporary
location. The original semantic description is replaced by a semantic

description o: this location.

Control.- The following commands are used to implement transfers of control

such as jumps, subroutine calls, error exits, or returns to the VITAL controller.

24

BLib ASSIGN: < argument > =

Permissible argument: flad or chain (see 1.6, 1.7).

Description: The flad or chain takes the value of CODELOC at the time the
ASSIGN command is executed.

The assign command can be used inside code brackets only.

8. LABEL: < argument > =

Permissible argument: any VITAL identifier (referred to below as a label).

Description: Labels are intended for use outside code brackets with the
JUMP command (see 3.11).

A labelled statement may be located either before or after a JUMP
to it.

8.8 SUBROUTINE NAME: <argument > =
SUBROUTINE ENTRANCE NAME: < argument > =

Permissible argument: any VITAL identifier (referred to below as name).

Description: The name is intended for use with the CALL command (see 3,12),

Bl RETURN: RETURN

Permissible argument: none

Description: The RETURN statement must be the logical end of a subroutine.

3.10 CENIE: ERIT

Permissible argument: none

Description: EXIT terminates execution of a semantic routine in which it appears

feee 5.1) .

25

3.11 JUMP: JUMP < argument >

Permissible argument:

Outside code brackets: label (see 3.10).

Inside code brackets: primary whose value is a semantic description (see

S« 4).

Description: A JUMP is an unconditional transfer of control. (See description
of flads and chains, 1.6 and 1.7.)

3.12 CALL: CALL < argument >

Permissible argument: subroutine name or subroutine entrance name (see 3.8).

Description: The CALL transfers control to the subroutine or entrance and
saves in MARK a pointer to a register containing the return address. Calls

may be recursive (see 1.1).

Bl FAULT: FAULT <argument >

Permissible argument: integer

Description: Control is returned to the controller, which informs the user

of the fault number and awaits further commands. This command is intended

for use when irrecoverable semantic states occur.

3.4 STOR: BTOP

Permissible argument: none

Description: STOP returns control to the user via the VITAL controller. It can

be used inside code brackets for logical termination of the run-code.

8.5 CONMPLETE; COMPLETE

Permissible argument: none

Description: COMPLETE initiates system functions needed in order to

terminate compilation. Control passes to the VITAL controller.

26

Conditional Statements

3.16 IF ... THEN: IF < argument 1 > THEN < argument2 > ||

Permissible arguments:

argument 1: Boolean expression.

argument 2: sequence of statements (conditional or unconditional)
separated by semicolons.

Description: The sequence of statements is executed or not executed,

depending on whether argument 1 has value TRUE or FALSE, respectively.

3.17 IFNOT...THEN: IFNOT <argumentl > THEN <argument 2> ||

Permissible arguments

argument 1l: Boolean expression.

argument 2: sequence of statements (conditional or unconditional) separated
by semicolons.

Description: The sequence of statements is executed or not executed,
depending on whether argument 1 has value FALSE or TRUE, respectively.
The IFNOT statement is generally more efficient than an IF statement with a

negated Boolean expression.

3,18 IF.,.THEN.,..ELSE: IF <argumentl > THEN < argument 2 >
ELSE <argument 3 > ||

Permissible arguments

argument 1: Boolean expression.

argument 2 and 3: sequence of statements (conditional or unconditional)
separated by commas.

Description: If argument 1 has value TRUE, argument 2 is executed; if it has

value FALSE, argument 3 is executed.

27

4. DECLARATIONS
4.1 CELL DECLARATION: CELL < argument >

Permissible argument: list of cell identifiers separated by commas.

Déscription: The CELL declaration specifies single storage locations
extant at compile time. The declaration must precede all other uses of

the item being declared; the same is true of all other declarations.

4.2 INDEX DECLARATION: INDEX <argument >

Permissible argument: list of VITAL symbols separated by commas (and not

beginning with a number).

Description: Identifiers declared as indices may be used by the compiler in
the usual manner as subscripts and in arithmetic expressions. Indices are
treated in the same way as integers but may lead to more efficient code in

TALLY, subscripts, etc. Eight indexes are available.

458 RUN-INDEX DECLARATION: RINDEX <argument >
The details are similar to 4.2, except that the index is part of the run-code

rather than the compiler.

4.4 TABLE DECLARATION
Example: TABLE SYMBOL 400 ID SEMANT EXTRA
Form: TABLE <argumentl ><argument 2> < argument 3 >

Permissible arguments

argument 1 (name of the table): any VITAL identifier.
argument 2: integer (the number of rows in the table).
argument 3: list of VITAL identifiers separated by spaces (names of the columns).
Description: The TABLE declaration specifies tables that are used at compile
time. More than one table may be declared by separating each complete table

description with a comma.

28

4.5 STACK DECLARATION: STACK < argument >

Permissible argument: list of VITAL identifiers (stack names) separated by

commas.

Description: The STACK declaration specifies push-down stacks used by
the compiler. The depth of the stack is 1008, unless some other depth is
indicated by placing a digit after the identifier (the two being separated by

a space).

4.6 RUN-STACK DELCARATION: RSTAK < argument >
The details are similar to 4.5, except that a run-stack is part of the run-code

rather than the compiler.

4.7 DATA DECLARATION: DATA <argument >

Permissible argument: list of VITAL identifiers (data identifiers) separated

by commas.
Description: Data identifiers are used to tag and test (see 1.16, 1.19)
operands with bit configurations at compile time. Thirty-two is the maximum
number of data and sub-data identifiers which can be declared (see 4.8).

At present, VITAL provides four common data identifiers, with no need

for their explicit declaration: ABOOL, AINTGR, AFRACT, AREAL (see 5.4).

4.8 SUB-DATA DECLARATION
BDATA < argument >
IDATA < argument >
FDATA < argument>
RDATA <argument >

Permissible argument: list of VITAL identifiers (sub-data identifiers) separated

by commas.

29

Description: The system-provided DATA identifiers ABOOL, AINTGR, AFRACT,
AREAL (see 4.7) influence the type of run-code that is generated (see 5.4).
The user may create subdivisions of these DATA identifiers by means of the
declarations BDATA, IDATA, FDATA, RDATA, respectively. When a semantic
description is used to determine the proper run-code to be generated (see
5.3, 5.4), a semantic description tagged with a BDATA identifier is treated
as though it were tagged with ABOOL (analogously for IDATA, FDATA, and
RDATA identifiers).

When run-code is compiled for a (unary or binary) operation, a
semantic description of the result is generated (see 1.14)., This semantic
description (see 5.4) is either tagged with the data-type determined by the
operation and operands; or, if this data-type coincides with the data types
of the operands and these operands were originally tagged with a single sub-
data identifier, then the semantic description is tagged with the sub-data

identifier.

S GENERAL FEATURES
G PROGRAM STRUCTURE

An FSL program consists of a collection of declarations (see Section 4)

followed by a collection of semantic routines. A semantic routine consists of

the following items in succession:

(D # followed by an integer (this integer is used by the productions in order to
call the routine; (see Chapter 2, Section 3).

@ space or tab

@ sequence of statements (conditional or unconditional) separated by semi-
colons.

(4 # (Note: If a conditional statement is immediately followed by # , the
symbol || (see 3.17, 3.18, 3.19) need not be typed.

Each declaration must terminate with a semicolon. The first and last

items in the program must be BEGIN and END respectively.

30

Szl COMMENTS
A comment can be inserted at any point in the program. It must be

preceded by two asterisks and followed by a carriage return.

Tt CODE BRACKETS

The routines in an FSL program describe not only the operands and
operators of the translator but also those in the run-code, i.e. the code being
compiled. To distinguish between these two, the latter are enclosed within

code brackets: [§ ... ; corresponding run-code is generated when

appropriate.

Most symbols can be used both inside and outside these delimiters,
but with different effects. An example is helpful in explaining the situation.
Example: [L4+1L2 B - R2

The primaries L4, L2, R2 are variables with values, whether they
appear inside or outside code brackets. However, their interpretation in
connection with operators is different in these two cases. Outside code brackets ,
the primary itself is an operand (in the same sense that an address is an operand
in machine language). Inside code brackets, it is assumed that the value of
the primary is a semantic description (see 5.4). This description determines
the operand in the run-code being generated. For example, in "L4 + L2" above,
"+" refers to a run-code addition whose operands are described by L4 and L2.
On the other hand, the arrow (-) outside the code brackets refers to a compiler
store operation whose operands are R2 and L4 + L2 (both of which

are primaries; see 1.2 and 1.14.

5.4 SEMANTIC DESCRIPTION
A semantic description is a 36-bit word containing information needed

by the system when generating run-code. For example, this information

31

includes: (1) bits describing data types (real, integer, etc.), which influence

the kind of run-code that is generated; (2) bits referring to a run-code address

or index number, which determine the operands of the run-code. The contents

of the first word in each semantic entry of the main stack is a semantic

description. (However, the second word in each semantic entry has no

pre-determined format; it is unused by the system, being intended to give

the user ample space to store semantic information.)

The bit identifiers and their interpretations are given below.

Bits 1.1 — 2.8

EDIR (direct)

BNEG (negative)

BINDX (index)

BINA (in run-accumulator)

BCON (constant)

ABOOL (data type)

If no B-bits are set, the address in 1.1 —
2.8 is taken as the run-code operand.

Run-code operand should be a register con-
taining the number in bits 1.1 — 2.8.

Bits 1.1 — 2.8 refer to a run-code operand
(i.e. address or index register number) the
complement of whose contents is desired.

Bits 1.1 — 2.8 specify an index number.
Operand is run-code accumulator.

Bits 1.1 - 2.8 contain a pointer to a system-
created table containing all constants in the
input text being compiled.

The data types are not single bits, but

bit configurations (see 4.7). The run-code

generated depends upon these data types,
see also 4.8.

32

APPENDIX A

CONTROL META-COMMANDS *

L, LANGUAGES

A VITAL language consists of three types of elements: one set of
productions, one set of semantics, and any number of programs. Each
element consists of a symbolic directive (the source text) and one or more
binary files (the results of compilation). All information for a language is
maintained in the user's APEX directory.

Most of the VITAL meta commands are used to create, modify, and
compile the various elements of a language. Before using these commands,
the user must direct VITAL's attention to the desired language via the
command LANG and then to the desired element of that language via one of

the commands PROD, SEM, PROG. A language or a program under a language

may be deleted via the DROP command; productions and semantics are

deleted individually via the FRESH command.

COMMANDS

LANG LL

LANG switches VITAL's attention from the current language, if any,
to the language LL. The current language is frozen in its current state. (If
the current language is already LL, LANG LL freezes the current element of
LL (productions, semantics, or a program) in its present state and removes
that element from VITAL's attention.)

10 If LL is not a defined language name, or if both the
productions directive and the semantics directive for
LL are fresh (contain no text), VITAL will define LL
as a language name, create fresh productions and
semantics directives, and respond "FRESH LANG".

i If LL is a defined language name and either the production's
directive or the semantics directive contains text, VITAL
will respond "OK".

* By James E. Curry, C. W, Adams Associates, Inc.

33

In either case, all subsequent commands until the next LANG command will
refer to the language LL or one of its elements.

LANG has no effect on the state of an existing language; thus no
harm is done if an existing language is accidentally referred to via LANG.
If a new language is accidentally created with LANG, some superfluous items
are created in the user's directory; these may (and should) be deleted by
dropping the language via DROP.

LL must be an acceptable APEX name; it must begin with an alphabetic
character and contain only alphanumeric characters (no periods).

The language name LL is entered in the user's directory as 9LL- it
is defined as a file group (map) which contains the names of all programs
defined under LL. 3LL: is entered into the file group 9-VITAL.

The productions directive and the semantics directive for LL each

consist of two files named 9LL*1D, 9LL°l1L and SLL.2D, 9LL-2L,

respectively. These files are not entered into any file group.

PROD
The PROD command is legal whenever VITAL's attention is directed
to a language LL or to one of its elements. PROD switches VITAL's attention
to the productions of LL; the current element of LL under VITAL's attention,
if any, is frozen in its present state. (If the productions of LL are currently
under VITAL's attention, PROD has no effect.)
il If the productions directive is fresh (contains no text,
VITAL will respond "FRESH".
By If the productions directive contains text, VITAL will
respond "OL".

In either case, all subsequent commands until the next LANG, SEM, or

PROG command will reference the productions of the language LL.
PROD may not have an argument; since there is only one set of

productions for each language, it is not given a name.

34

PROD has no effect on the state of a language or on the user's
directory; if a set of productions is accidentally referenced via a PROD
command, no harm is done.

Note that the production of a language cannot be dropped via DROP
except by dropping the language itself. Use FRESH command to delete

productions.

SEM

The SEM command is legal whenever VITAL's attention is directed
to a language LL or to one of its elements. SEM switches VITAL's attention
to the semantics of LL; the current element of LL under VITAL's attention,
if any, is frozen in its present state. (If the semantics of LL are currently

under VITAL's attention, SEM has no effect.)

1. If the semantics directive is fresh (contains no text),
VITAL will respond "FRESH".

2. If the semantics directive contains text, VITAL will
respond "OK".

In either case, all subsequent commands until the next LANG, PROD, or

PROG command will reference the semantics of the language LL.

SEM may not have an argument; since there is only one set of
semantics for each language, it is not given a name.

SEM has no effect on the state of a language or on the user's
directory; if a set of semantics is accidentally referenced via a SEM
command, no harm is done.

Note that the semantics of a language cannot be dropped via DROP
except by dropping the language itself. Use the FRESH command to delete

semantics.

PROG PP
The PROG command is legal whenever VITAL's attention is directed
to a language LL or to one of its elements, and if the productions of LL have

been compiled. (See note below.) PROG PP switches VITAL's attention to

35

the program PP under LL; the current element of LL under VITAL's attention,
if any, is frozen in its present state. (If the program PP is currently under
VITAL's attention, PROG PP has no effect.)

¥ If PP is not a defined program name under LL, or if the
directive for PP if fresh (contains no text), VITAL will
define PP as a program name under LL, create a fresh
directive for PP, and respond "FRESH".

2 If PP is a defined program name under LL and its directive
contains text, VITAL will respond "OK".

In either case, all subsequent commands until the next LANG, PROD, SEM,

or PROG command will reference the program PP.

PROG has no effect on the state of an existing program; thus no harm
is done if an existing program is accidentally referenced via PROG. 1If a
new program name is accidentally created with PROG, some superfluous items
are created in the user's directory; these may (and should) be delted by
dropping the program with DROP.

PP must be an acceptable APEX name; it must begin with an alphabetic
character and contain only alphanumeric characters (no periods).

The program name PP under the language LL is entered in the user’s
directory as 9LL*PP-; it is defined as a file group (which currently remains
empty). 9LL-PP- is entered in the file group 9LL:* .

The directive for PP consists of two files named 9LL*PP*3D and

9LL-PP-3L. These files are not entered into any file group.

Note: Since the productions of LL specify the chopping rules for all programs
written in LL, the productions must be compiled before any program may be
defined under LL. (A program may not be compiled unless the semantics of
LL have also been compiled.) If the binary production files become
undefined at any point, (this occurs for FRESH and READ on productions),

the existing programs of LL remain defined but may not be referenced with

PROG until the binary production files are redefined via compilation. (If the

36

chopping rules for the language are changed in the process, all existing

program directives must be reconverted (see REC).)

DROP

The DROP command is legal whenever VITAL's attention is directed
to a program PP under some language, or whenever VITAL's attention is
directed to a language LL and not to its productions to semantics (i.e.

after a LANG command but before any PROD or SEM command). The effect

of DROP is to undefine the program PP or the language LL, respectively.

i[5 If the program PP under the language LL is currently under
VITAL's attention, VITAL will ask "DROP PROG?" and await
a response. If the user strikes the NO key, the DROP
command will be cancelled. If the user strikes the YES
key, VITAL will undefine the program name, the directive,
and all binary files for PP, VITAL's attention will then
be directed to the language LL but to no particular element
of LL.

it If no element of LL is currently under VITAL's attention,
VITAL will ask "DROP LANG?" and await a response.
If the user strikes the NO key, the DROP command will
be cancelled. If the user strikes the YES key, the language
name and the directives and binary files for all the elements
of the language LL will be undefined. VITAL will respond
"CLEAN"; no language will be under VITAL's attention.
DROP may not have an argument; it always references the
current language or program.

Note that DROP cannot be used to undefine the productions or semantics of
a language, since these are essential to the definition of the language. The
FRESH command may be used to delete existing text from the productions or

semantics (as well as a program) of a language.

A DIRECTIVES — DIRECTIVE EDITING

DIRECTIVES
Each element of a VITAL language (productions, semantics, and

each program) has an associated directive. Each directive consists of two

S

files. One file, the dictionary, contains the character strings for all words
which appear in the source text; this file provides a means of associating a
13-bit internal symbol with each word. The other file, the text file, contains
the source text itself; each word is represented by its internal dictionary

symbol.

DIRECTIVE EDITING

The VITAL editing meta commands are legal whenever VITAL's
attention is directed to some element (productions, semantics, or a program)
of some language.

The editing commands accept arguments similar to MK5's; the
exceptions are: directive lines are referenced differently; the MOVE
destination is separated by "='" rather than by tab; text may not be typed
after the editing argument, even if only one line is to be typed.

Directive lines are referenced by their first word. If the word used
to reference a line occurs only once as the first word on a directive line,
that line is referenced. If the word occurs more than once, the first occurrence
is the line referenced. If, however, the word is followed by "(k", kX a
positive octal integer, the kth occurrence is the referenced line.

A directive line may also be referenced as the nth line above or below
a specified line by following the identifying word (or the "(k") with "+n" or
"-n", n a non-negative octal integer. (The algebraic sum is taken if more
than one "#n" is typed.)

There are two restrictions on referencing directive lines:

18 If a directive line begins with a space or a tab, that line may
not be referenced by the first word; the "+n" facility must
be used.

Pz If the first word on a directive line contains a non-alphanumeric

character and is more than one character in length, that word
may not be used to reference the line; the "+n" facility must
be used. (This inconvenience will be removed soon.) The
legal forms of editing arguments are:

38

a. arg 1 (arg | » arg 2 for MOVE)
b. arg 1 | n (arg 1 | n= arg 2 for MOVE)

B arg 1 - arg 2 (arg = arg 2 » arg 3 for MOVE)

where arg 1, arg 2 and arg 3 are directive line references as described
above. Type 1l specifies a single line; type 2 specifies n lines beginning
with "arg 1"; and type 3 specifies the lines from "arg 1" up to but not
including "arg 2". (The argument after the "»" may be present only for
MOVE; it specifies the destination of the block to be moved.)

The character "#" is a special argument which specifies the first
line of the directive if it occurs as "arg 1" and the (blank) line after the
last line of the directive if it occurs as "arg 2" or "arg 3".

Spaces and tabs may be used indiscriminately in editing arguments;
they are always ignored except as word separators.

If the word used in the line specification for "arg n" occurs more than
once as the first word on a directive line, the message "ARGn kx" will be

printed; "k" is the number of times the word occurs. (This is not considered

an error.)
The following errors are possible on editing commands:
il Bad format. (VITAL type "NO".)

This error ocgurs when the argument is formatted improperly;
e.g. multiple line specification for an INS, no "=" argument
for a MOVE, illegal argument separator, etc. This error

also occurs when a word is chopped into two words because

of a non-alphanumeric character contained in the word.

2 Bad argument. (VITAL types "ARG n NG").

This error occurs when a word is not found at the beginning

of some line in the directive; when the kth occurrence of a
word is specified and there are fewer than k occurrences;

when a "+ n" specification specifies a line not in the directive.

3is Bad line block. (VITAL types "ARG —~ NG").

This error occurs when an "arg 1 = arg 2" argument is specified
if "arg 2" specifies a line above that specified by "arg 1".

30

4, Bad MOVE destination. (VITAL types "ARG = NG").

This error occurs when the line specified after the "=
is within the line block which is being moved.

Thus it is impossible to clobber a directive by faulty line block specifications.
The INS and REP commands expect text to follow. All lines typed
after an INS or REP command are processed as text until the text is terminated

by another meta command (a line beginning with red "==" is typed), or by
the YES or NO function keys. If the text is terminated by a red "»=" line
or by the YES key, VITAL will accept the text and complete the INS or REP
command. If the text is terminated by the NO key, VITAL will ask "REJ?"
and await a response. If the response is the YES key, VITAL will reject
the text that has been typed and cancel the INS or REP command. If the
response is the NO key, VITAL will accept the text and complete the INS
or REP command.

If the READIN key is struck while text is being accepted, VITAL will
read paper tape and accept text from the tape. In this case, the INS or REP
command is terminated by a meta command line from the tape or by the end
of the tape.

If an INS or REP command is given from paper tape, the text is
obviously taken from the tape also. In this case the command is terminated
by the next meta command line or by the end of the tape.

If a function key other than YES, NO, or READIN is seen while text
is being typed, VITAL will type "IL CHAR" and ignore the illegal function
key.

If a chopping error is detected in a line of text, VITAL will type
"CHOPPER" followed by the text on the line separated into words by
vertical bars. The line is accepted; if it is incorrectly chopped, it may be

replaced or edited later.

40

COMMANDS

INS

The INS command accepts only a single line specification. The
text typed after the command will be inserted before the line specified.
(Text is terminated as described above.)

The command INS# is used to insert text into a fresh direction.

)

RE
The REP command accepts a single line or line block specification.
The text typed after the command replaces the line or line block specified.

(Text is terminated as described above.)

The DEL command accepts a single line or line block specification.
The line or line block specified is deleted from the directive. No text is

accepted after DEL.

MOVE
The MOVE command accepts a single line or line block specification

followed by "=" and a single line specification. The first line or line block
is moved to just before the line specified after the "=", No text is accepted

after MOVE.,

EDIT
The EDIT command accepts a single line or line block specification.

If the line block is longer than 30 lines, the EDIT command will be rejected;

8
VITAL types "NO". The line or line block specified is displayed on the user's
scope with a marker box on the first character; "EDIT" is typed, and VITAL
waits for the user to edit the displayed text. (Do not type anything before

the "EDIT" message is typed, even though the text may be displayed before

41

the message appears). Editing is done as follows:

Moving the Marker

YES Move marker one position to right.

NO Move marker one position to left.

BEGIN Move marker one word to right. A "word" is an
alphanumeric.

READIN Move marker one word to left. Character string.

LINE FEED UP Move marker to beginning of line, or if at beginning

of line, to beginning of previous line.

LINE FEED DOWN Move marker to beginning of next line.

Deleting Text

DELETE Deletes character in marker.

WORD~EXAM Delete character in marker and rest of word (alpha-
numeric character string).

STOP Delete rest of line, excluding carriage return.

Other characters typed are inserted into the text to the left of the
character in the marker; the marker remains on the original character.

Editing is terminated by striking the RED key. VITAL types "ACC?"
and waits for a response. If the YES key is struck, VITAL types "OK" and
replaces the original line or line block with the text appearing on the scope.

If the NO key is struck, VITAL types "REJ?" and waits for another response.

If the YES key is struck this time, VITAL will cancel the original EDIT command
and type OK. If the NO key is struck again, VITAL will type "EDIT" again

and return to editing mode.

Do not use the HELP button to reject the text.

OTHER DIRECTIVE COMMANDS

The FRESH, REC, WRITE, and READ meta commands are legal whenever

VITAL's attention is directed to some element (productions, semantics, or a

program) of some language.

42

The FRESH command initializes the current language element. All
existing binary files for that element are undefined, and the directive is

made fresh.

REC

The REC command performs the following actions: the text in the
current directive is saved in character form, the directive is made fresh,
and the saved text is inserted into the directive. Thus, the effect of REC
is to re-chop the directive text. (REC does not undefine the existing binary
files.)

There are two possible reasons for using the REC command.

1. If the chopping rules for a language are changed
(e.g. a terminator is changed to a non-terminator,
an ignored terminator is changed to a visible terminator),
any existing program directives should be REC'd in order
to re-chop them with the new chopping rules. Similarly,
if it becomes necessary for the system designers to change
the chopping rules for the production language or the
semantics language, all productions and semantics
directives must be REC'd.

Dere The editing meta commands currently make no attempt to
re—-use the space vacated by a deleted line block; thus as
a directive is edited, it grows in size. The REC command
shrinks the directive back to minimal size.
WRITE FF
The WRITE command accepts as its argument a legal APEX name FF;
the name must begin with an alphabetic character and contain only alpha-
numeric characters. WRITE creates an APEX file named FF and stores the
text of the current directive into this file. The name FF may now be given
as the argument to a READ command.
FF becomes a file with no directory origin. The characters are

stored four per word from right to left beginning at the fourth register of the

file. (See the note following the READ description.)

43

READ FF

The READ command accepts as its argument an APEX file name I'F;
the name must begin with an alphabetic character and contain only alpha-
numeric characters. FF must have the format of VITAL character file (i.e.

created by WRITE). READ makes the current language element fresh (binary

files are undefined, and the directive is made fresh), and inserts the found
in IF into the fresh directive.

NOTE: The READ and WRITE commands are intended to give the user

a way of transferring directives from one APEX name to another or from one
language to another under the same name.

To transfer a directive from one language to another under the same
APEX name, simply WRITE the directive from the proper element of the first
language into the file FF, switch VITAL's attention to the same element of
the second language, and READ FF.

To transfer a directive from one APEX name to another:

il WRITE the directive into FF.
2 Exit VITAL via HELP or SCRATCH.
3k To the BT:

SWHAT FF (note length of file)
SWRMA4F FF FRE 500 (or other MK4 area)

(If T is n pages long, it is 400n registers
long and occupies 2n drum tracks.)

4. Log out (or abort) and log in under the second APEX name.
e e the Bl

S5DFIL FRE 500 0 400n (FF)
6. Under VITAL, do a READ FT for the proper language element.

(This inconvenient procedure will become obsolete when READ and WRITE

are implemented for MK4 drum areas.)

44

& GENERAL

INPUT TO VITAL
Function keys (READIN, BEGIN, YES, NO, WORD EXAM, LINE FEED
DOWN, and LINE FEED UP) are special keys in VITAL. They always terminate

the current line just as carriage return does. This fact is insignificant if
the function key is typed alone on a line; but if characters are typed before
the function key is struck, VITAL will act as if a carriage return was struck
before the function key.

A line which has been terminated with carriage return or a function
key cannot be recalled. The DELETE key deletes the preceding character
on the current line; if DELETE is struck n times in succession, the last n
characters on the line are deleted. ("Characters" means single LW codes,

not compound characters.) The STOP key (not the NO key) deletes the

current line.

No distinction is made between red and black characters (except for
red 'm='),

The READIN key signals VITAL to read paper tape. The text on a
paper tape is processed somewhat differently from keyboard text; the differences
are explained below. Also, function keys on a paper tape are ignored. The
entire tape is read in before any characters are processed; if the abort button
is pushed while the tape is being read in, VITAL will type 'ABORTED' and

return to keyboard input mode without processing the tape.

META COMMANDS IN GENERAL

When first entered (from the BT), VITAL types '==' and awaits a
meta command. If the command is one which is not followed by lines of
text (unlike INS, REP), VITAL will process the command (possible soliciting

a response from the user) and eventually type '==' again. If the command

45

is one which expects text, VITAL must be told when to return to command

mode: this is done by striking the YES key or the NO key (to accept or

reject the text typed, or by following the last line of text with a line beginning
with two red hands. In the former cases, VITAL will type '==' and await another
meta command; in the latter case, the line beginning with the red hands will

be processed as the next meta command. The intention of this method of
processing is to allow VITAL to maintain closer control over the user's

actions; observations on the relative (aesthetic or practical) merits of the M5

and VITAL meta command philosophy are solicited.

RULES FOR META COMMANDS

A meta command will be rejected if the underlined portion of the
command word (see meta command list) is not typed completely, or if
the first four letters of the command word are typed incorrectly. (E.g. LI,
LIS, LIST, LISTZZ will all be accepted as LIST; but L, LIZ will be rejected.)

Meta commands may be separated from arguments by any number of
spaces and/or tabs; arguments which are single upper case characters do
not require a separator. (E.g. BIN*, INS#.) (See the description of the
editing commands for possible exceptions.)

Meta command lines are always checked for format. The last
significant word on a line must be followed by carriage return or a function
key (possibly with intervening spaces and/or tabs). That is, commands for
which an argument is meaningless may not have one; and commands which
require a single argument may have only one.

Whenever VITAL rejects a meta command line typed on the keyboard,

a message to that effect will be given, and '==' will be typed. All typing
done before the '»=' is typed will be ignored. If there is doubt as to whether
the last character typed was ignored, the STOP key guarantees that it will be.

Whenever an error is detected in @ meta command line from paper tape,

the line in error will be typed out before the error message. The incorrect

46

line will be ignored, '==' will be typed, and input will be temporarily
switched to keyboard mode. The user may then type as many lines as he
wishes; when he wishes to resume processing the tape (at the line following
the line in error), he strikes the READIN key again. (The tape will not be
read again; no 'PETR FREE, PUSH GO' message will appear.)

All meta commands on paper tape must be preceded by two red hands.
If VITAL expects a meta command (as it does when READIN was struck when
VITAL expected a meta command, or when VITAL finishes processing a command
not followed by text) and does not see red hands on the next line of the tape,
it will type a message to that effect and treat the situation as it does other
errors.

If a meta command from paper tape requires a response from the
user, it is to be typed on the keyboard. VITAL will switch input mode to
keyboard when necessary.

If a meta command is rejected by VITAL, nothing is changed by the

rejected command.

META COMMANDS DESCRIPTION

EELP MOVE arg
SCRATCH EDILT -arg
QUIT LIST (arg)
LANG name TYPE (arg)
PROD FRESH

SEM REC

PROG name or COMP name BIN (mode number”)
DROP DICT

INS arg READ name
DEL arg WRITE name
REP arg KEEP name

* 1000 = no semantics
100 = scan listing
10 = type errors
1 = stack state (if errors)

Note: To obtain a combination of the above modes, simply unit the corresponding
binary numbers.

47

STANDARD CHOP TABLE

The following table lists the Lincoln Writer codes and their

corresponding chopper classification (see Chapter 2, 2.1).

DU bW N~ O

11
12
13
14
15
16
17
20
2.1
22
23
24
25
26
27
30
31
34
83
34
35
36
37

0 n* 40 Q n 100 - 140 o
1 41 R 101 L 141 A
2 42 S 102 | 142 o
3 43 T 103] 143 €
4 44 U 104 4 144 h
5 45 v 105 X 145 2
6 46 w 106 & 146 B
7 47 X 107 - 147 A
8 N 50 b 4 l 110 < 150 A
9 n 51 Z n 111 > 151 ~
B 52 (t e - 152 {
O 53) # 113 O 158 1
RI 54 + t 114 RI 154 z
BN 55 - £ 115 BN 155 =
NO 56) t 116 NO 156 '
YES 57 : t 117 YES 157 B
A n 60 CR ic* 120 n
B 61 TAB ic 121 c
& 62 BSP 122 v
D 63 BLK 123 q
E 64 SUP t 124 v
F 65 NOR t 125 t
= 66 SUB t 126 w
H 67 RED 127 x
I 70 SP it** 130 i
J 71 WX 131 y
K 72 LFD 132 z
k 78 LFU 133 ?
M 74 —— 134 U
N 75 - 135 n
O 76 STP 136 j
P v 77 DEL 137 k

* %k

n = normal; t = terminate (visible); it = ignored terminator; ic = ignored

control character.

SPACE may only be declared VTERM or ITERM (see Chapter 2, 2.1).

48

APPENDIX B
PRODUCTION LANGUAGE GUIDE

This appendix is intended to help the reader familiarize himself
with the use of Production Language. Productions are developed for the

compilation of any expression satisfying the following Backus Normal Form

specification:
< expression > :: = < term > | - < term > | < expression > - < term >
<term > :: = < primary > | < term >* < primary >
< primary > :: = < identifier >| (< expression >)

Identifiers are the basic symbolic units (see Chapter 2, 2.1).

For example, {(-A *B -C) is such an expression.

The writing of productions need not be based on a BNF-specified
syntax. With a little experience, it is quite natural to think directly in
terms of Production Language. BNF is used here only as a convenience in

introducing PL.

1 Writing the above BNF description in production-like form yields:

E1|| T - E

-T - E

B = = E

Tl|| P - T

[B2 = I

PlH I - P

(E)- P

P, T, and E would be declared as intermal symbols in the final PL program;
see Chapter 2, 2.2. The symbols *, -,), and (would be declared as

reserved words; see Chapter 2, 2.1.

49

2s Since simpler constructs must be recognized before more complex

T E.. Also where one

1 71" ™1
sequence of symbols resembles the end of another, the longer sequence

ones, the productions must be re-ordered P

must be tested first if misidentification is to be avoided (consider E1 above).
The result of this re-ordering is:
PlH I ~P
(EY—= P
TlH T*P - T
RAEANT
E1|| E-T - E
-T - E
T - E
3. Flow of execution is rarely sequential; when a match is found and

the production completed, a jump must usually be made. The jump may be
unconditional, or it may depend upon the next symbol scanned. In the latter
case, productions are needed to determine proper branching.

Whenever the stack is altered or a construct is recognized, an FSL
routine must generally be executed to update the semantic column of the
stack, modify storage, or generate code.

The productions must begin in such a manner that the first symbols
scanned will be properly recognized. Also, productions should be included
for detecting syntax errors, i.e. undesired formation of the input.

The following productions are the result of the above considerations
and the heuristic guidance of the question, "What symbol can come next?"

B, || - SCAN ~P,

P.|l (SCAN * By

L =P EXEC 1 "Tl

50

EBR||

The numbering of the EXECs and ERRORs is arbitrary.

!

E-T 8G

=% 8§ =

T 3G

SG

E SG

ESG

E.SG

EXEC 2

ERROR 1

EXEC 3

EXEC 4

EXEC S

ERROR 2

SCAN

SCAN

SCAN

= TBR
= EBR
- P]_

* EBR
= EBR

= EBR

Below is a trace of the productions executed when the formula

is processed.

(

~A *B -C)

Each part of an executed production is written on a separate line;

if the stack has been modified, the new version appears on the right.

Label

Production

SCAN

5l

(cont)

Stack

([initial state]

Label Production

SCAN
= TBR

TBR T®

EXEC 3

oiZ

Stack

(-1
(-P
(-T
(=T %
(-T*1
(-T*P
(-T

Label

EBR + 1

EBR

Production

SCAN

= TBR

S

ESG

EXEC 5

= EBR

E -

SCAN

w P

EXEC 1

T

SCAN

= TBR

B=T8G

E SG

EXEC 4

= EBR

= P

93

Stack

[==
(E -

(E -1
(E-P
(E~T
(E-T)

Label Production Stack

T T

SCAN end of example.

The successive states of the stack consitute a parse of the
expression. This succession of states can be readily represented by the
following tree-like structure. The first character scanned is the lowest

in the tree. Successive horizontal levels correspond to successive stack

states. (See Figure 2, next page.)

54

[3-23-1280]

P14 — —

T4y

P1+1

FIGURE 2

55

Figure 2 may be drawn in more conventional form to clearly exhibit

the parsed structure of the example:

>rl.I
o e e o], s ") s,]

®———+H——T

FIGURE 3

56

APPENDIX C
ALGOL

Included for reference are the productions and semantics of
ALGOL as implemented in VITAL. Readers of this section may find

Appendix D of assistance.

57

£v0s
Z¥(s

2V0s

0Ss
1d04
1404
1yQs
01
1014
01

10s
10s
10s
1Ss
10s
10s
10s

S0s

NVIS
r NV2S

y NVYOS

NVIS

22 33
1z 23Qa
$1 ¥0¥13

9z 023Q3
vz 333

NVIS £2 333 445> 2343
NVIS 0z 233 d1$» 2343

NVIS
NVIS

NVIS
NV)S
Z NVIS

NV2S
NV2S
Z NvOS

NV2S

dls» 233
416y 233

91 233
o1 3033

0 Jo¥a3
1 3G

- A 1
«' 1 -1
9s
L
9s
pELI « | 33n0320¥d
pELIE e 1 33003208 445
- 1 AVYY d1S»
1014 5304 « 1 33M032038d d1S» 304
1 013y 2304 « | AVYYY d1S» 2304
%51 4Ly
9s
330033044
AVadY V3 - A VH3Y
dlSH
98,
33003 20¥d
AvddY 1v3d - A v¥dY
dis»
9s
NI1238 ¢ -N 1938

gevao

grva

j10

1150

isa

108

221 T1ANA 121 3IHN = NOHN
sZ1 01l = 1HL0L»

sttt HONO ¥HL s11 N3HL

LTT HONOYHL 211 NYHL 9171 0L 2 HIOL)

~ MO Y¥Ve NIHL A v = 1008

3ON3BI3Y 43y = 333

+ W80¢ 4 v o ~ -) ¥4 J1 = LEVLS)

3513 ON3» ¢ = ON3»

1450419 > 99 <59 263 % p3 Bd = 1

§9 - 29 + = KWd»

19 s 09 x = 0L

MO¥Ve A vV TF < > 24 03¢ -+ = 1xN>»

L s 1§+ 26 - 95 4 S5 ¥v80¢ #s ¢ £5 « = IdONN

£5 T3V s 3AVS s1 01d o7 QI¥Y £7 18¥ 27 03X13 171 BIILINT oI Nv31008 = 101>
s§ T3GVY s 1@y 21 03x14 rr @|HIILNI or Nv3ITW009 = dIS

¥d 9 1TWId S D1 IxX3D 18 48 INI

MN03 J¥04 13 3Ssv8 d O01d NN Q1YY I30d £ INI

00 4315 S33¥

JINI¥3IA3Y 438 (0 ()} S3¥

1IN ITIHN HONO ¥HL ¥04 N3HL 01 09 0109 N3WL 31 3573 ' ° S3¥
~/ xCcAY TTFTCH> 2§~ ¢ S3¥

3801634 3AVS 4 v « S33

. 13av1 Iv3Y¥ 03X 14 W|IILNT Nv31008 Avdyy S3¥
N3ni3de 3300300 ININWOD ON3» NI938 S3¥

¥yg0 ¢ MO¥V¢ Y¥ON¢ NS¢ dNS¢ 03¢ ONVH¢ S3¥

4vr s0-9091 99 230 90 30)

suorionpold IODTY

58

03
Ols
13

01s
1Q3s
6Ss
192
W)s
658
Ols
0S»
i3z
6S»
Ba
Nids
WOs
6S»
TAS»
003
19s
19s
S0as
652
13
015»
1G»

SQas
1334»
152
343%s
13de

§Sa2
143Ys
SQas
1602
101»

0S5
SQs
SQs
SQs

NYIS
NYOS
s d0d3
2 NYIS
NYDS 15 233
NVIS
NYOS
0s 23Qa
s 23ad
v 40¥d3
NV2S
NYIS
NVDS (f 23Qa
NVIS
01 233
NYOS
NVIS
NYIS Z 234
NYOS
NVYIS
1T 30¥A3
NVIS 92 033 sz 23Q@
Z NVOS s2 234
92 233
NVIS
2 NV¥IS
§ Y03
NYOS 9f 233
NVIS W1 233

NVIS a 233 Wi 233
NYDS o D3X3 W1y 333
Z NV2S Wi 23x3
2 30393

(2)33

NVOS v 233

(1 23Qa

NYDS (1 233

p1 30¥¥3

NQ
7304

7304
201>

030d
7344

9

9S

3JAVS >} 3AVS
95 09

NN « 109
09 « 0109
L)

ON3>»

98 1

« ONVH¢ |

9s

0N3> NN« ON3» N3N
9s

N3N 139»

« INIKRQD

N « 330 1534
JAVS

NOHN »

09 - 0409
09

N1938

N3

13V1S>»

I

9

98

e V]

e 1

9s

e 1

« 3438

9

«(1 3AVS

e {1 W1 2304
eV [700D

« * 1 W1 2304

« ' 1 70>

95

« * 230d

«} 2344

98

1
" o

9s

[RRE]
§ox3

§TAS

1]
B
§aiIs

UNLY

ns
gos

113y

1333

1101

§1d0

§sva

d¥r ees9rsr 99 I3 90 3Nl

59

)3
HYVds
03
Hdvds
0)X3s
0Ss
2484
G1s
03
192s
2384
2384
0X3»
2189s
218s
z2dg8»
?d8s
0S»
03
id»
ids
0)3»
03
2484
2d8s
ids
03
23s
23s
032
2ls
Zls
Yl1Ss
2ds
Zls
2ds
HYVds
032
Juvds
0)3+
032
03
dds
37
0)3»

NVYIS
Z NVOS

£ NVIS

NVOS
NvOS

NYJS

NVYOS

sy 233 ¢
44

sy 23x3 z»¢
v

orr

4

v

£
2!

Hi01»
TH10 L
$¢
i
94

kB

Wd»

aL»

J40NDH

or
sy 233 1
Iy

sy 23X 1¢
e

14

os

3a
3a
PERE!
3a
PED €|
3a

23x3

3a

pERE]
3a

3a
3a
3a
3a
3a

PER |
33

3a

3a

3a

3a
3a
3a
3a
3a
3a
233

9 30¥33

3 23
95 ¥d ¢
e ¥4 ¢
% vd 01d
v vd 014
"1

d8

p) CP)
309
9s 3
953

95 18
9s 18
95 49
9S 48
2d¥04
10>
d

d
alyy

1XN» 48 1008>
9s 48
d

9s 13
98 3

928 1

9s 1

9§ d

9§ 1 Wd» 3
95 d

9§ vd

7 Vd ¢
% vd Q1d
v vd Old
Isve

aryv

} 014

«* 3 QA
- {30
R
« {3 014
- '3 014
- NgHL 3 41
-0 3
H0dve 3
- ¢ 3
«¢ 309
«)6 18
e 9% 18 413
v 18
« 95 419
~ 9548 v 18
« 95 d8 -«
- 9513
- 003 HIOL
e THIO0L 3 431§
« ¥0N¢ 3 3Sv8
e ¥0Ng 3 Glyv
" 3 0lyy
1XN> 3
e [XN» 3 1008
« 553 ¥ 3
-0 3
Hd» 3
- 95 1
e 95 1 Hd> 3
Glr L
« 9SS d
e 9Hs5d 0101
5.4 KQ¥vYe
e 95 4 3d0NM
e 95 d Nd» 3
- 981
- {179
e 10
« {1 01d
"' 1 Cl4
« 90S¢ d
- gNSe¢ 1
3} 1
95
340NN
d¥r so-9p3l

§z38

§r3g
1zi9

irig
1249

123

§r3
gzt

pri

§2d

01

99 230 90 3NL

60

0s
6Sa
(37]
0s
6Ss

[LY
9Ga
9Gs
SQs
0Ss
S
(LY
0Ss
2ds
6Sa
0Qs
03
1X3s
dds
2ds
§Sa
0s
dds
19¥8vd»
19dvds
Oas
68
ps
0Ss
0)Y3as
€S
X3
23s

L1IVH
NYOS
¢ 23Q3
21 30333
s21 2303
s11 233
9 23x3
9 233
NV2S § 233

211 23Q3

rrr 233

zor 233

1or 23Q3

p21 J3X3

vi1 2303

fv 23Q3

NV2S vy J3X3
vol 23X3

sor J3X3

001 ¥0¥d3

NYOS «» DJ3X3 9v» J3X3
9y 233

sT 30d93

NV2S 2s 2313
¢ ¥0¥d3

NfHM » J3X3

0z1 J3x3

vs 233

001 233

[&- BN

S
S
« N0 £
98

ON3>» Np « ON3» S J¥04
0N3»s «~ O0N3» S 3SH Nn I
NA « 0Ng» N1938

Nn o« ON3» S NI1939

« 5 2304

N1938 « S NI938
9% S « 95 NN
ON3» § « ON3» N0 DI
358 Nn I

96 4 « 95 d K0¥Ve 3

0Ng» NO « ON3» d MO¥Ve 3
NAHM 2 « NNHi» d MOdv¢ 3 ¥03
d3ls « 4315 d MO¥ve 3 ¥0d

95 01d « 55} 014
11724 - {} Q1d
95 d - 955 11V
GNI» Nn - 0NB) 17V)d
955

11724 - vd 014
- Y4 ¢

- 95

98

Nn - 1° 1309

9s

24804 « 00 3 NNHM>
NAHM > « NNHM» 3 d31S
95 N0« 95 3 N3ni3d

A3

5631 « 9533 3G

ON3
(]

19s

nes

1és

R-FE

tdd

134

§193dvd

1 938vd

1192

4y @0-9p37 99 I30 g0 3NL

61

soruewas rIODTY

NLY ¥33Xes
7 1008 1y @ # #0V13 N3N L3NG
“HSAWd-3 STV
T
B{dldAd v AVLISd} 4048
NIHL MSAdvVd 31
30 d1dSss
k|
$A37 ATIVLY{I08HWAS Y X0 18} HSNd :uo._mo;.ﬁxjmv HSNd
3019WAS 078015 *NI1938 30078s+#
T IN3G dHNf
120153834 AT1IVL CAWAOW«I07543d 2071583 dar0
15075¥3d A1V WEXON«I0BH3d 20753 dew0
SHSAW ~ MSAWS =MSAOW =367Vd
‘INDS-A3Z0
SYLSXVi-I0T301S
L0 1GWAS-T0GHAS Y
+33¥108-333 v
20715 d3d 1 +dW 18NS
A\dW18MS- (9LNIv |1+ 2 1Y
\z1deto(12LY) tlelYyer 1LY
L1191+ L TINAY
Y LINWYeT+ NIIS
AN IS+ +¥1dAdAY
V3LdA¥Y-(¥OLNID 2015 ¥3d!
${001°3073000) A1Vl $2018v+I073000

fq._

. L]
Livlsd avisX'eoz 3AVS
0z LNJX ‘0z INDd
WivisG 42078

LIYHE0d “ A vHIY

gvigd* J0¥d

+33¥ 01 0z d33¥

73431 3nvA G 00z 138v1
\YdL3 INVW3S GI 00y T0QHAS

Lordd ‘S MAd 2 v

‘oM S TAND ZSUND 2D "FZ Mz 24
LHISXYHW ' 333108 20 BHAS “¥8433L° 34410
*121¥8'21¥ 113 LNDS YXON U404 ‘80 1ST¥° I43¥
*ANILT13 AUVAON I018 VI N IS NSA W dH 18NS
‘MSAUVD MSAOW WI3AYV IdhLd 7' A3 LINKY
*gl'pl'slt2zltiltol “¥LHAAY ITMIS ONGS

L)

#IN38 &2

sl
Ni938 LINlss
X3 ONIY
x30NI
Avisy
AIVLS
AIVLS
118
vivd
38vl
3agvl
3gve

1732

1133
N1938

390 os.9991 99 230 90 3N}

62

41 dhnf
L= rpA VL

N3IHL 0 < ¢ 31
1o «fidignsa g
143013000
\GULdA AV 1 +r+ULIAYY
‘re0000001/121Y
V12 LdrdN 18NS *dNigns+'AVLSd
VilaedLdAdys {1 1 AVLiSX} 04T
Ylelde (YOUNIT T2 LA
YdH 18NS (39 IN19|dWLBNS!
A Le LINWY
A HY AOKI

NIHL HSAOMW 31

T
'@d7 dWNr t{z- 1) ATV baviSX d0d

VWY e LIONY + ' (12 Lde) « (1 (dW18NSa -V LSX)

T

NINLIY SSlaers 22 EVLITNRYHT+IZ LAar]2 LY

NBHL o <1 LONJIY
42073000
\BdW1BMGrr-1213
AINRYe0 Yre]2Lde
V{12 13" W1sx}d0d
L{s1°AV1SX}d0d
2YXONT
V4N LANG- (39 INT9| dWL B8NS
1307643d ATIVL *sL-(¥ILNI9 D015 ¥3d)

NIHL HSA Y J1

‘34 0153

tALdAYVerALSXYR 4009 17VD

INI3 ON3ss

T NiL3d 2 {07801 %078} dod

T
3L SXVW-20101S

NJHL ¥ISX¥W < J01d01S J1

V(1-'A37) ATIVL {108WASY '3D078}d0d

111x3 +1008 17VD

%2078 ON3es

NN L3

T
B{dldA¥V ' ¥VLSd} 40T

NIHL MSAdvd 31

NANL3Y U030 dde s

1 1421

63

8l

21008
29

5

L 14

4y os-9p31 99 O 90 3ni

. k|

N3NL3Y ¢ ATIVL B2 r}ATIVL
VIRV - LIYx (Tozr4e1-2 b e 8

227 ddnr M{r-"e3 AVl
Bloelzxlo v{z-"1p A1V

NJHL

11103
i |

1<¢ 31

VBYULdABYe T+ +LI0AY SHLdAYVae(000000TxIINAYI AL Vigery
) Y¥Ivdg 1Iv2
‘MSA¥Y-3NAl

19 L+ (NDD@" 39LNIV ' ¥108 |d+¢

‘T LG 3573 Brier-110 NIHL 0ztojr) 31
NIHL (NODY SI »

T v (0=4q) 31
3lvd ONNOG LSV lss
T dIvdg 1V

TP LI0AY-!
Vierl2a1dA8Y B
v o¢e0 MN3 VD

‘2e1

V[1- (30 LNI9IO0T80LD Yo Lle (AVEEV O)

231vd8

2221

[144

sl
dlvd ONNOBss

802

AvddyY MIN 10304+

T 31dA1S-3STV4

T 0l-0

1314 15-3081
GVIRN0S 1VO
v oole (2084 '18¥1I040)
WVEVd VW3 SV <01 D0 ddss
dvd 1WH04 108 01ddss

(781

§31dWIS ON3ss
[F21

81

7 INI V) Vo letAVdEV|O0) P12
dvd 1wd0d 103 01 YVes
3
NdNl3Y +207301S AVl
Yo {01' GdAL10}20780LS) 271'108WAS} 33 IN3 4IN3
I3 VT IN3 1Y NIHL 3dRIS 41 8 3HIS
$34A10+-1V3IY0 85!
7 AHIS WM *3dAl0«1D VHi0 821
T AHIS dwnr Y3dAL0-dI INTO sit
T NHOIS MAr *34A10-70089¢9 831
1730 1013 'd1S3S3dAl s1 -01lss
7 3131dK0D
I
'8
Nanl13y
I
e 0fs9v3r 99 030 g0 301

64

Ve (0 “INVA3IS "2 T08WAS 80§
dld HSNd ‘AWYY SI AYVAI des
T INIG dNWnr P9Y]
T ¥33y¢ ~ 333109
T 1Invd N3HL 0=083d LON3I
I
BN IS * AVISd)H SNdT
NIHL HSA¥Vd 41
EAYISAY ¢ 1-aV1Sdd
T LINId dWNT N3HL 2078WS 24 dI
Y5t AV P B (-tpA1vilg 4921
f
Qi l-thivisd sy921
T
MG dYd-HSAONZ3NYL
BAYVAORD 11V2
V{1 YIS HS N B
m
BNI1S-¥1d A dvY
NIHL MSANd LON3I
NIHL Avad¥y SI 21 41
35713
‘@riectwisd v oy .
V41000000 %1)
T V921 4NN N3HL AVEY¥Y S1 21 41
224341 - 2434
NIHL WNOIS 41
vole ({0334 %) addd «
T
9271 4RAr ‘Prlet'wisd o &
N3HL 18V10 S1 (21z%e 41
tr1e (39IN19 | YD) s1INId
Vges -10gHASY Y8 1 -0l 832
AIVIS WONS VAWNVd 3ZIWILINIes
7 H833 A1Vl
V{0 "z1°d43¥) ¥3IN3 852
WYaYd ¥333Y MY VAss
3 N3G dWAr
130 1GWAS+ 10 GWASY *D33¥0 *T ¥-0L
g 21l eQV13 ARNNCY

tpQ¥13 HSNd '18VI4 T1VD tzlel1 Bdildeol s 1N3d
‘oleto |0} 124

A¥INT 00178 AV “IAW D0 ¥dss

3 IN3d dWf “o0leGdaL0jol 852

JRYN NOILONOIss
4yr os-9v37 99 230 90 3INL

65

‘eye (0 LNVWIS 21} 10 8HAS
N3HL NODE SI 21 LONdI
ASVAIBYd ~Qlss
L
BT
47 dnnr t{z- *1 AVl
V(rly ¢3Aavs) d40d V(114°3A¥S}d0d
NIHL o =1 LONJIH
41 « 2073000
g (1°3AvS} d0dY
Wydvd 3801S3 s
T NANL3Y YLINDS ANVL
‘g (0L Y'IAVS}HSNG *{ol 'IAVS}HSNAZ
T 95 1Inv3 NBHL TVYNIIS LONJI
tole (0 "INVWIS' 27} 10OWAS
Y 1IX3 Y INOSe0
SE{INIS "IN} HSNAY
LINISe (NODF * 3109 " 39 INI9j INDS) tavdS 11vD
WYdvd 3AWS LSVlss
3 WdS 1Y)
Wydw 3AVSss
1
ganl3yd 21 0v0y
T
B {dldAd v AvISd} 404D
NIHL HSAdvd 31
‘fes LMNV3 N3HL 21 4 2 3dild 31
DYy HIIH NAL3Y 330300 ddes
T N3NL33
13071¥801S ATIVL D078V A1Vl $207300D-11
820 10 1Se JWNArY
307300 +3078v1 *11-301300)
101 *(¥OINIV|D0ROLS) ‘21 ‘108WAS} ¥3INI
V{0l ‘(00000rABY Y ‘Z1 '738V1} ¥3IN3
tLIX3 Y8VINI0S 1TV
tol ~018YVI040)
WYdvd VW3 SV 01 T38Ves
3123dS B8V«
®s 10vd
us 170vd
1
VINDX HSNd
T
05 1nvd
NIHL AvEIV ST (0 ‘vdlX3'0 } 108WS LONJI
v o0 g5-9r31

20

[13

2 3Vd$S

83

113

66

(141

28VINN0 4

L 13

[2489
sl f

99 10X 90 301

T
vy 10V4

NHL J03dd SI {0 °T3A31'0}T38v1 LONJI
NIHL WN9IS d1

tr L {0'INTVA 21} 138V 218V
Y113
Y e (Ilo GO 17VF
198¥d TIV) Yeles *0le0 arr
k|
INJd HSPd {1l°INDd}HSNd
AIgvId TIV) tzles toled 55y
95 QId « 95) 0ldes
k]
128y ~ 367V4
L2 ge2
)
1103
12d¥-3 5V
‘geye2g

13073015 ANV ¥ 1271(207H01LS)
N3HL VNIg ST 27 dl

VINDd ATVl 2
9 vd QId ~ * 3 Qldes
L]
12380357V
T
2¥e2
35713
‘zde2l gelesy
13073045 ATTIVL V2le (27 (207¥80LS)
N3HL ¥109 S1 21 41
ELRE]
1113
T
Z¥de-351Vd 2 ezl
35713

12 dd-3NAL
A2y« (AOUINTT |0 L)
19gy1 1V e lez
NIHL TVNSIS LON4I
12 e (INVW3S'2T) T0BHAS
N3HL NOD9 S 27 LONJI
LINDd ATTVL sy
9 v Qlde ' 1 Qldss
T [s 1invd NBHL TWNIIS 10N31
4vr os-9s3r 99 I30 30 301

67

E IR Lo R A

X1dss

T g2y B

™A SBVas

Teyg 21y

0%

Fg ¢ Y

SINIINONs s

T grokD dWnr 353 14D IWAr NIHL »1 318

gyl 1w e leln

\rle0l *18Y1 WD 2 les]

01 09 TYNOILIONQDs s

T Ni3N13Y

T
0L « 2 - MWV ¢
V(A3 0 21 "TAGVI} E3INT

N8HL TYNSIS 1O0N4I

1ol {0°3NTVAT 2L} I BY X

I3 ‘g ol QdHNry

*g@y1 1Y) 2l eI

138V 01 0944

KoLy

VIgyl 1D 2 el

INIWBLYLIS SV 11V ddes

¥

V1¥e3dAld *{P071300°INId}d0d

83§
85¢
s

(181

s

278V

sl

805

8Ly

43015 3WN03J0¥d 30 ONIee

L
V-t ATIVL teto 1
EERE]
3013000
@I NN
10 T300)+¢
N3HL 117 J1
1

\Uhlde ol ¢ ‘golD 1VIY
V(144 INJd}HSME ${01'IN)d} d0d
14¢30 13000+ ¢ *{d°INId}d0d

T N3NL3Y

T

11-2-138V¥1¢
1084 01 21" T3V} ¥IINI
358713

9y
I 9 4

1 39 4
{ Vd Ys3»

4yr 059991 99 J30 s0 301

68

VY- V30
mmn
Zzs¢e LlmMyd 3573
‘gredd 17V
N3HL V3389 S1 2141 35873
‘gretd 17V08
NHL Lovae s1 21 41 3873
‘@zsMd 11vO8
N3HL ¥9LNI9 S1 27 31
NHL lovade sl ¢131 3573
mn
15¢ LMvd 3573
\rde y3d9 ‘gezdd 17103
N3HL Tv3¥9 Ss1 2141 3873
Vi Ye1v389 tgszMd 17908
NHL Lovade S 2141 3873
ViYde¥9LNTY ‘g2z dHd 171v28
NIHL ¥91INI9 S1 27 41
NIHL ¥9LNI9 SI €7 31
R L AVISX}HS N *{0 1 " AVISX}H ST

SILe (YIINIS 2 t0le (YOUNIT ST 8514
JLVILNBN3d X3 s

g 1A Y sri
04 4

12481 v 01 B as¢
ONvVe s

T 2Hg 27+ B 82t
10Ns#

TdA8 A3 1 Y a1

1224821 T 91 3 801

T8 21> 1 H 89

T2dg 1 <1 Y 293

T2 QT $01 R 859

T YA =01 [a9
SNOTLVI e s

3 28 21-91 § "9
SON s »

2L RALE AR 29
SN dss

T2yl a9
AlQss

T2 21 3 809
T0Hs ¢

T 21 -8 8s
93Ns s

4y6 os-9p91 99 230 90 301

69

F2Y-W1dIVZ(VNIG 0 L)

Y IT
0le-1vV389
gn
277 avon
ERNE]
£1 7 Qav01
NIHL #1318
3513
cor LnV3
N3IHL 10089 S (slazl) Jd1 3513
00171 dhNl

‘@ 121 0v013573 £1.0v071 N3HL »1 41T
N3IHL s1 = tol=zzl) 4l

tgel 0V01AVSH
‘el - 51 4 V2l e 210
¥dx3 TVNOILIONOD4»
T NAOL3Y VINDX AT1IVL g {270 VISX) HSNdY
‘ V1Ix3
A\l Ye00000p+T Y Cpde (£ W3 A8
BHAND 1TV)
V{WTBAYY L AYLSX) HSNd
(L *AVLISX) HSNP
17018015 A1IVL ‘WIFAAV-13)LNIV|D0180LS)
Vile(¥9INIT { €D
LINDX 40d ‘8nskay 11V)
]
LDAMNIX d0d ¢ 13 Vs 10 8
NIHL 0 = INDX 41
1d14758M 1SVl
7 gnNsAyy 17Vd

1d 14058 NSy »
F1Y-WNIDDVS (VNI ' T ¥ 0)
(14
rs¢ LMV 3673
‘M ge1v3Ye
T

s§s¢ 1Mvd 3973
\greMd 17VO8

N3IHL v3de S 21 41 3S73
\@srdd 17VOF

NIHL L1ovade s 271 41 3973
t@zedld 1V

NIHL ¥9INI9 ST 21 41

NIHL v3d9 S g1 41 3873
v 0 f9p9l

20017

8001

280SAYY

8l

234

99 03 90 3N

70

‘sQv14 HSNd

00 3

ERILLEYY

1 gelerleeg

I1INN 30 N3HM 3
IOV JWAr N3HL 0 3 NIIS = (21-90

d3 1Ss+
L0N315

ssQv13 HSNd

00 40
TP T s0V1d JWNF N3HL 27 =

NdHle s
vl 313

YsQv13 HSNd

00 4

\ENOI
\EIRAIIVE (VNS D

1 Qvon

- Qv0d
N3IHL ¢
‘s £QV1d Vol
N9 IS «~ (9nar|NISH ‘908
nadl 43
T (073002 uv1SO}HSN
‘g Ys0vd Nl ‘eTer1 P MsOv
d31s d~
AR
358 HLIM TWNOI LIOND
. 18
368 o -M WNOILIOND

X3 Olss

2
SeaNary
NI |2

el
3sM

> 2% 41
epl 273
fe 271
d31Ses

\ple2?
13 HSNd
J ¥0dss

I AR-REl]
) ON3ss
#10¥135
D ON3ss

FTQe10v73 t20v 74 e 20V HsAd

35038+
TRT 10V dANF NIHL 27 LONdI § V1ov1d HSNd
ISMWTD dlss
T {20173000 *uviSO} HsNd
ERILL.IFY
T« 10vd
Ty 10Yd
W YenDOYZ (YNIF ' 21| 0)
fror LNVd N3HL 0z27 31
WYdYd SY 11Vddss
Msor L0V NBHL 0=z LONJ]
INIWALVLS SV 11V Idss
TR - EARial]
3¥01S 031S3Ne s
TR0 3
340 1Ss

N 059031

LIRA

8021

Bt

8!

sst!

il

sl

[TA R4

el

I

8ol

8901
850!

ol

#5010

2201

slor

99 230 so0 3NL

71

AesAVI4 telerl 273

01 43 d31Sss

3

' {20B00) *AVISOYHSNd ‘g2 1-r 13
FIINN ¥0 371HK d-3 ¥0dss

T Qg 250V1d Yol dWNCY
t{01'W1S0)d0d

INALS ¥03 40 ON3es

Yrs0v4 dWne NIWL 21 313
YsQv1d HSNd

00 3 MMLNRs s

HEMsAvId dWnr N3HL 27 LON4IS

N3
521

(1241

5l

8221

v os-9s31 99 230 90 301

72

APPENDIX D
SYMBOLS

The following two tables list the symbols used in Production
Language and Formal Semantic Language, as well as the sections of the

manual which explain these symbols.

TABLE 1
PRODUCTION LANGUAGE: SYMBOLS

END 1 * EXEC 1
NORM i UNSTK 1
VTERM 2.1 STK 1
ITERM 2.1 STAK 1
RES %2 SCAN 1
5 2.2 ERROR 1
s 2.2 HALT 1
INT 2.3 NEXT 1
2.5 TEST 1

l 3 RETURN 1
- 1 CALL 1
o] I 1
8G 1

* Numbers refer to sections of Chapter 2.

78

CODELCE
STORLOC
PERSLOC
ACCUM
MARK
MAIN
SAVCELL
Li

LLi

Ri

RRi

t

constant

(
)
=l ... 2

TRUE
FALSE
- A1 Sk .

FORMAL SEMANTIC LANGUAGE: SYMBOLS

= =

* Numbers refer to sections of Chapter 3.

TABLE 2

.
fa-—

O W ~N o U U N DN NN

—_
- O

«12
slids 123
AB; 1:.28
.14
« 15
1%
Y
.18
=148
«19

74

CONST

A

\%

<

>

OK
SIGNAL

-+

*

?

+) < >

PUSH
POP

ENICER: fsvon |

—

TALLY
LOAD
SAVLOAD
SAVTEMP

w
w
o

RETURN

(Cont.)

W W W NNNNNN NN

w W W W w W W w w
© o o o U1 U s W

«20
2l
o4
s 20l

Sl
ok

Al
.22
DL,

w
~

(Cont.)

EXIT

JUMP

CALL

FAULT

STOP
COMPLETE

s TERER o |
IFNOT...THEN... ||
IF..,THEN, . .ELSE.., ||
CELL

INDEX

RINDEX

TABLE

STACK

RSTAK

DATA

BDATA

IDATA

FDATA

RDATA

BEGIN

END

b= b 4

[2 I @ 2 N @ o & o R & 4 T e e T e o o A I S . N “> I /S B VR S B O R S B 8 B S I s

o
— — — — — p— — — w0
w ~ o (@] 1N w S} y—

— = = O 0 0 ®® N o bW N

[URPR —

7S

LTS {

o ."H" PWIW"’""’F{“'—FTT’"

REFERENCES

Feldman, J. A., A Formal Semantics for Computer Oriented
Languages, Computation Center, Carnegie Institute of

Technology, 1964.

Feldman, J. A., A Formal Semantics for Computer Languages
and its Application in a Compiler-Compiler. Comm. of the

ACM, Vol. 9, No. 1, January 1966.

Floyd, R. W., A Descriptive Language for Symbol Manipulation.
JACM, October 1961.

77

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classitication of title, body of abstract and Indexing annotation must be entered when the overall report e classitied)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Unclassified
Lincoln Laboratory, M.L.T.
) 2b. GROUP
None
3. REPORT TITLE
VITAL Compiler -Compiler System Reference Manual
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Note
8, AUTHORI(S) (Last name, first name, initial)
Mondshein, Lee F.
6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
8 February 1967 84 8
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR’S REPORT NUMBER(S)
AF 19 (628)-5167
i ten C -
b. PROJECT NO. Technical Note 1967-12
ARPA Order 691
. 9b. OTHER REPORT NO(S) (Any other numbers that may bse
‘ assigned this report)
= ESD-TR-67-51
10. AVAILABILITY/LIMITATION NOTICES
Distribution of this document is unlimited.
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
None Advanced Research Projects Agency,
Department of Defense
13. ABSTRACT
This manual describes the general operation of the VITAL compiler-
compiler system and the details of Production Language (PL) and Formal
Semantic Language (FSL).
The appendices contain information on the system's meta-commands,
a guide to the use of PL, an example of an ALGOL compiler, and a table
of symbols used in PL and FSL.
14. KEY WORDS

VITAL compiler-compiler system algorithmic language
ALGOL computer languages

78 UNCLASSIFIED

Security Classification

